AD-778 497

PAS-II: AN INTERACTIVE TASK-FREE
VERSION OF AN AUTOMATIC PROTOCOL
ANALYSIS SYSTEM

D. A. Waterman, et al

Carnegie-Mellon University

Prepared for:

Air Force Office of Scientific Research

Defense Advanced Research Projects Agency
Public Health Service

June 1973

DISTRIBUTED BY:

National Technical Information Service

U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

UNCLASSIFIED

/_/
SECURITY CLASSIFICATION OF Th.S PAGE (When Dete Entered) @ 7; g ? 7

REPORT DOCUMENTATION PAGE) S r o R LRUCTIONS: o
1. REPORT MUMBER 2. GOVT ACCESSION NO.] 3. RECIPIENT'S CATALOG NUMBER
AFOSR - TR -74 -0688,
4. TITLE (and Subtitie) S. TYPE OF REPORT & PERIOD COVEREZ
: PAS-II: AN INTERACTIVE TASK-FREE VERSION OF
AN AUTOMATIC PROTOCOL ANALYSIS SYSTEM Interim

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(e)

D. A. Waterman 0
A. Newell F44620-70-C-0107

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, T ASK
Carnegie-Mellon University A L f MAUNTINUMEBERS
Department of Computer Science 61101D
Pittsburgh, Pennsylvania 15213 A0 827

11, CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Defense Advanced Research Projects Agency June 1973
1400 Wilson Blvd N S UUBERIGPAEACES
Arlington, Virginia 22209)ML 17

14. MONITORING AGENCY NAME & ADDRESS(!I different from Controiling Office) 1S. SECURITY CL ASS. (of thie report)
Air Force Office of Scientific Research (NM) UNCLASSIFIED
1400 Wilson Blvd
Arlington, Virginia 22209 1Sa. ggﬁéaaaFCAﬂou/oowuanmuc

18. DlS?RIBUTION STATEMENT (of thie Report)

Approved for public release; distribution unlimited.

17. DISTRIBITION STATEMENT (of the abetract entered in Block 20, if Jilferent from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reveree eide If neceseary and identify by biock number)

produced by .
NATIONAL TECHNICAL |
INFURAATH)N SERVICE

S'nr,!oH Vl\ 1 l\ .

20. ABSTRACT rConttnue on reverse side if neceesary and identily by block number)
PAS-II, a computer program which represents a generalized version of an

automatic protocol system (PAS-I) is described. PAS-II is a task-free, iInter-
active, modular data analysis system for inferring the information processes g
used by a human from his verbal behavior while solving a problem. Tne output
the program is a Problem Behavior Graph: a description of the subject's
changing knowledge state during problem solving. As an example of system

operation the PAS-II analysis of a short cryptarithmetic protocol is presentec.

17

DD , 5™, 1473 eoiTion oF 1 NOV 85 IS 0BSOLETE ;, UNCLASS IF IED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Enterant

. - ol —_—— " . r o b ke G - pros. o ’ i s e e e &

PAS-II: AN INTERACTIVE TASK-FREE VERSION OF
AN AUTOMATIC PROTOCOL ANALYSIS SYSTEM

D. A. Waterman and A, Newell

June, 1973

~
i
)
&
Q
-

Departments of Psychology and Computer Science
Carnegie-Mellon University
Pittsburgh, Pennsylvania

This paper will appear in the preprints for the third International
Joint Conference on Artificial Intelligence (IJCAI-73). This research
was supported in part by Rescarch Grant MH-07732 from the National
Institutes of Health and in part by the Advanced Research Projects
Agency of the Office of the Secretary of Defense (F44620-70-Cc-0107)
which is monitored by the Air Force Office of Scientific Research.

i

D. A,

PAS-11: AN INTERACTIVE TASK-FREE VERSION OF
AN AUTOMATIC PROTOCOL ANALYSIS SYSIEM

Waterman and A. Newell

Departments of Psychology and Computer Science
Carnegie- Mellon Universi.y

Pittsburgh, Pennsylvania

Abstract

PAS-11, a computer program which represents a
seneralized version of an automatic protocol system
(PAS-1) is described, PAS-11 is a task-free, inter-
active, modular data analysis system for inferring
the information processes used by a human from his
verbal behavior while solving a problem. The output
of the program is a Problem Behavior Graph:
tion of the subject's changing knowledge state during
problem solviing. As an example of system operation
the PAS-11 anai ,is of a short cryptarithmetic pro-
tocol is presunted,

1. 'ntroduction

Automatic protocol analysis is a joint effort
by man and machine to infer from the record of the
time course of a subject's behavior, the underlying
information processes. As developed (5), it usnally
refers to the verbalizations of a subject solving
some problem under instvuctions to think out loud.
Prcioco! analysis designates the full range of activ-
ities engaged in by the psvchologist when working
with protocols: description of the subject's
behavior according to an hypothesized model, induc-
tion of new rules, derivatio. of consequences from
a model in the context of specific data, and measure-
ment of adequacy of a model. The initial focus »f
our work has been behavior description in terms of
information processes, given an hypothesized general
model (the so-called problem space in which the
subject vperates).

The PAS-1 system (14, 15) was our first attempt
at automacic protocol analysis. This is a fully
automatic, non-interactive, specialized system de-
signed to analyze cryptarithmetic protocols and pro-
duce as output a problem Sehavior graph (PBG)describ-
ing the subject's ser:ch through a posited problem
space. The protoco: analysis is represented as a
sequance of procersing stages that evirtually trans-
form the raw pro‘ocol into a problem behavior praph.
At each stage rules are applied which effect a trans-
formation of the data, The organization of PAS-1 is
shown in Figure 1.

PAS-1 has successfully analyzed protocols from
DONALDAGERALD=ROBERT and CROSS+ROADS=DANGER crypt-
arithmetic problems, The results obtained in the
DONALD+GERALD=ROBERT task for twc of the subjects
have been discussed in detail (15) and demonstrate
that this approach tc automatic protocol analysis is
both feasible and rewarding.

Encouraged by the success of PAS-1 we have
designed and built an improved version called PAS-I1.
PAS-11 was designed with two major goals in mind: to
make it interactive and task free. b, interactive
we mean that the user is permitted to take an active
part in the analysis: he can provide answers to sub-
problems the system is unable o solve, correct proc-
essing errors, and even maintain control over the
processing sequence. Clearly, real-time interaction
of this sort makes the system a more powerful tool

a descrip-

for protocol analysis. By task free we mean that

the system is independent of any particular problem
domain. To make PAS-II task free we partitioned the
system into two parts: the problen dependent part
consisting of the processing rules or heuristics used
at each stage of the analysis, and the problem
independent part consisting of the general control
structure and command language. Thus, to apply the
system to a protocol in a new problem area thec user
must first supply the system with processing rules
for that domain.” The design of PAS-11 also included
four subgozls: to make the system transparent,
modifiable, extendable, and open (see Figure 2).

Two important implementation issues were not
addressed in the design of PAS-11. 1). Improve system
performance in cryptarithmetic. This includes
expanding the deductive and inductive inference
capabilities, and "fine tuning" the system by
optimizing the processing henristics to produce the
best possible analysis within the given framework,

2). tixtend the scope of the analysis. For example,
extend the system back to handle the speech recoz-
nition and segmentation problems inherent in producing
a transcription from the audio tape. Or extend the
system to handle the problem of inducing the problem
space from the protocol or inducing a production
system model from the problem behavior graph.,

It was decided to make PAS-11 interactive and
task free, postponing the problems of increasing
power in a particular task or broadening the scope
of the analysis. This decision was influsnced by
the desire to provide a working tool for protocol
analysis that could be used by participants at a
workshop on New Techniques in Cognitive Research held
at CMU in the simmer of 1972 (7). The PAS-11 system is
currently running in LISP at CMU on a PDP-10 and is
availahle to the CMU (and the ARPA Network) comaunity,

This paper is organized as follows. The task of
protocol analysis is discussed in Secticn 2. This is
followed in Section 3 by a brief description of the
structure of the program and in Section 4 b. an
example of its use in analyzing a cryptaritimetic
protocol. Section 5 concludes with a discussion of
the general executive structure of the system and
ite implication for Al data analysis programs.

2. _Task of Protocol Analysis

Protocol analysis is a complex data processing
task requiring both weductive and inductive inference
capabilities. Our current approach to protocol analy-
sis is based on a particular theory of human problem
solving. For a description of this theory and an
introduction to the task of protocol analysis see
Newell and Simon (5).

—_—

Ultimately, a library containing processing rules
for a number of different problem domains will be
available to the user.

SEMANTIC PROCESSCOR

Topic Semantic Step 1 Step 2 Step 3
Segments Elements
9 . LINGUISTIC Temporal || Normal- |, E":;tac' e |
{two D's] PROCESSOR Integration ization
: Protogroup
{each Dis §) (NUMD2)
[therefore, T Is zero) (EQDS)
(THE'._.FORENEQTO0)
Protogroup
Op:(PC1
Kn: (BECAUSEOF (EQ D 5)(EO T0})
Exiract next Yes
Element P
C1=-0 T-0 1
D=5 Datermine
Unknowns
PBG Mechanism
Information
PBG Group LI Drigin
R < Mo hanism i
GENERATOR o (PC 1)
In: ({EG C10}{EO D 5))
LBV GROUP PROCESSOR
Figure 1. Flow Diagram of PAS-I.
GOALS
Interactive: User and system exchange information during processing.
Task Free System is independent of any particular problem domain.
SUBGOALS

Transparcent: System is easy to use and understand by virtue of a clean
organization and the ability to explain itself.

Modifiable : Jasic changes in the duta processing procedure can be made
by a user with no knowiedge of the language used to program
the system.

Extendable : The programmer can easily enlarge the system to encompass
a wider range of the data analysis.

Open The user, rather than the program, initiates and controls

the interaction and accordingly gains ultimate control of
the processing sequence.

Figure 2. Design Considerations for PAS-11.

<.

S Ty -

rLo

Iheoretical Substructure

crobiem Space. We assume human problem solvir. -
takes place by search in a problem space. The ele-
ments of this space are the possible states of knowl-
edge the subject can have about the task, where a
state of knowledge is simply an expression of what the
subject knows at some particular noint in the space.
Besides knowledge states, the problem space also in-
cludes a set of operators. These define operations
the subject can perform on knowledpe at a particular
state to yield new knowledge -- hence to move to a
new kncwledpe state. The operators are incremental,
that is, they take as input a small portion of the
total knowledge state (a small set of kinowledge ele-
ments) and produce as output new knowledge elements,

Problem Behavior (Graph. The subject's search
through the problem space for a solution can he des-
cribed as a sequence of operator applications that cre-

ate a string of incrementally changing knowledge states.

The plot of this search is called the probleri behavior
graph (PBG). Figure 8 (also used to illustrate the
output of the analvsis given in Section 4) shous a
problem behavior graph for cryptarithmetic. The nodes
represent operator applications: the knowledge ele-
ments at the lower left of each node are the inputs,
those at the lower right are the outputs. PBG
branching results from the subject abandoning infor-
mation and returning to a prior knowledge state
(usually because of a discovered contrardiction). For
example, in Figure 8 the outputs of nodes 4 and 6
onflict: "R is 4" conflicts with "R is odd," and
leads to the abandonment of nodes 4, 5 and 6. Note
that the knowledge state at any point in the graph is
the conjunction of all output elements on the path from
the given point back to the bepinning of the grarn,
All nodes on the path from the last node back to the
beginning of the graph are called currently active
nodes, ‘Their output elements define the current
knowledge state.

Data Analysis

The data being analyzed is the transcribed text
of a subject's verbal protocol. As the text is trans-
formea 1nto a PBG it is subjected to four major tvpes
of processing: linguistic, camantic, proup, and PBG.
Figure 1 typifies such a processing sequence.

Linguistic Processing. The text is first
segmented into shorter strings called topic segments,
each of which is expected to ultimately yield approxi-
mately one problem space element. Each segment is
then parsed using a grammar sensitive to the problem
domain under consideration. The result of parsing is
a set of semantic elements which represent the meaning
of the segment., For example, the segment "I is nct
equal to 6" might yield the elements (NEG)(EQ D 6) in
the cryptarithmezic task. Here (NEG) is called
an indicator element, (EQ D 6) a knowledge element.

Semantic Processing., The semantic elements
produced through parsing are first combined in very
elementary ways to produce new elements, i.e., (NEC)
and (FQ D 6) become (NEQ D 6). Next, new elements
reflecting relationshifps between elements from
adjacent segments are produced. Thus, (EQ D 5) from
one segment and (TIUEREFORE) (EQ T 0) from the next
segment become (BECAUSEOF (EQ D 5)(EQ T D), e.g.,
"because D is 5, T is 0." Finally, thesc elements are
arranged into initfal approximationsof operator groups,
each containing an operator element and the surround-
ing knowledge and indicator elements. An operator

4.

uroup is defined to be an operator together with its
input and output knowledge clements,

Group Processing. The tentative operator groups
produced during semantic processing are now analyzed
to obtain a complete picture of what the subject knows
at each moment and what operators he applies. First,
variables in semantic elements are identified by com-
paring the elemencs to the current context as defined
by the PBG. Thus if (EQ D 5) were in the PBG then
when given the element (EQ <I> 5), where 1> stands
for a class of letters, we recognize that <l> in this
case is the letter D,

The second part of p:oup processing consists of
finding, or hypothesizing, the origir of every knowl-
edpge element in each tentative group. The oripgin of
a knowledge element is defined to be the operator
which produced it, plus the inputs to that operator,
plus the operators which nroduced those inputs, cte,
Thus the origin can be represented as a tree which
defincs a collection of overlapping operator groups.

PBG Processing. The operator groups produced
during group processing are now incorporated into the
PBG. 1n gencral, each group becomes a node in the
PBG. In the simplest case the new node is just
attached to the last currently active node. llowever,
when contradictions occur (the output of one node
conflicts with the output of another) restructuring
occurs to eliminatethe conflict (see Figure 8),

3. Structure of the Irogram

PAS-11 takes as input a transcribed text of the
verbalization o1 a subjcct solving a problem and
prodiices as output a PBG, The processing rules for
the various stages, including the rules defining the
problem space, are given to the system. These rules
are supplied either by the system builder via a
library of rules for various problem domains or by
the user himself,

Medular ““ructure

PAS-11 is organized as a modular data analysis
system. The basic unit of organization is the mode:
a processing state which has associated with it a
bufier capable of holding rules or data. This buffer
can be modified by the editiug functions available in
the command language. There are three types of modes:
run modes, which hold the data being analyzed, rule
modes, which hold the processing rules, and anxiliary
modes, which hold task-free system-oriented rules.
Thus thc information in the rul: modes constitutes the
problem dependent part of the system.

The next level of organization is the stage: a
unit consisting of one run mode and any number of
associated rule modes., Data processing is performed
in a stage by applying the rules from the rule modes
associdated with tha'. tage to the data present in the
run mode of the pruvious stage. The result of the
processing is then put into the run mode of the current
stage. Figure 3 illustrates the modular organization
of PAS-11, with the arrows indicating data- flow and
the lines indicating mode associations.

The highest level of organization is the
processor: a unit consisting of consecutive stages
in the control cycle. For example, in PAS-I11 two
linguistic stages form the Linguistic processor and
three somantic stapes form the Semantic processor.

{UMOUYS 10U SapOW AJeljIXNyy)
11 Svd jO uoneziuebio enpoyy "¢ ainbiy

H0S$3D0Hd dNOUO HOSS300Hd 984 ___ HUSSHODMd UL
_| 3pow o 2PN _ apow - SO -_ PO = PO AP
| oydeudn Zaydeiry gaydeiny [AJEs) Zooea) EaaRa) FE0RL |
apow apow 3ponw 3ponw apop apon apow
sumousun wiiug 94d 1211yu0) Adouwagy 5d YaE
=~
HOSS300Hd JILNVYWIS HOSS300Ud JILSINDNID HOSS3204d Jid0L
apayy - apow n apow L apow apow apow =2 ;PoK
ETIUBWGS Zonuewag i Sluewag Zonusinbusy L onsinbuiy Jdoy Ixay

=

apo apopy _ J apoy;
Sty cw_ssM_ uon Do spow ;| | SPOW uoner
2 -jewrsop -esbaruy) geLiLUelo adedg _ uonaenxy -uawkag

— .

Modes. The modes currently implemented in PAS-
11 are listed in Table 1. Note that most run modes
have one or two rules modes associated with them.
This association is illustrated in Table 1 and also
in Figure 3,™ which shows the modular composition of
the various processors in PAS-II. The arrows in the
figure define the data iinks existing between modes.
The mode at the tail of an arrow provides the data
that the mode at the head of the arrow processes. For
example, processing in the TOPIC mode involves apply-
ing the SEGMENTATION rules to the data in the TEXT
mode and then placing the result in the TOPIC mode.
As each line in TEXT is processed, it is deleted from
the TEXT buffer. However, a copy of these deleted
lines is stored elsewhere in TEXT and can be re-
trieved (see the process functions in Table 2). The
arrows ia Figure 3 do not necessarily define the
control cycle, i.e., the order in which processing
occurs, The control flow is illustratza in LameZo ¢
(to be discussed later).

MODES

RUN RULE AUXILIARY
TEXT ASSOCIATION
TOPIC SEGMENTAT ION SAVE
LINGUISTIC1 EXTRACTION CONTROL
LINGUISTIC2 SPACE, GRAMMAR INFORMATION
SEMANTIC1 INTEGRAT ION
SEMANTIC2 NORMALIZATION
SEMANTIC3 GROUPING
GRAPHIC1 UNKNOWNS
GRAPHIC2 ORIGIN
GRAPHIC3 CONFLICT, PBG
TRACE1
TRACE2 PS, MEMORY
TRACE3
TRACES4 MATCH

Table 1. PAS-11 Modes.

Functions. The functions currently implemented
in PAS-II are listed in Table 2. They constitute the
command language available to the user, and are
divided into four categories: basic, »dit, flag, and
process funetions. Note that a mode name is a
function that puts the user into that mode.

A function call consists of a function name
followed by its arguments. Any number of function
calls may occur together. If it is not clear which
names are the functions and which are the arguments,
parentheses can be used for disambiguation. In
ambiguous cases the system always assumes the name
is a function name rather than an argument. Thus if
the user types HELP TOPIC DISPLAY 3 it could mean
either (HELP TOPIC): give me information about the
TOPIC mode, and (DISPLAY 3): display line 3 of the
current buffer; or (HELP): t&ll me how to get help,

(TOPIC): put me into the TOPIC mode, and (DISPLAY 3):
display line 3. The system would make the latter
interpretation.

=

Comparison with Figure 1 shows how PAS-II waps onto
PAS-1. Note that the scope of the analysis has
been extended to include a Trace processor (not
discussed in detail in this paper).

5.

Auxiliary Modes. There are four auxiliary
modes: save, control, association, and information.
The SAVE mode contains rules which specify which
mode buffers are to be saved on (or read into from)

a disk file when the WRIYE (or READ) command is
evecutecd. The CONTROL mode contains rules which
define the control cycle for the system. Initially
these rules define the control fiow shown in Figures
3 and 4. The ASSOCIATION mode contains rules which
define the associations between run and rule modes.
The initial (or default) associations are those

shown in Figure 3. The CONTROL and ASSOCIATION modes,
together with the CREATE function, permit the sophis-
ticated user to create new modes, redefine mode
associations, and reorganize the contro! flow for

ine entire system. One example of this is the use of
a reorganized PAS-I1 to analyze a problem description
(problem text) in natural language in order to infer
from that text a tentative problem space, one that a
subject might use in representing the problem (2).

The INFORMATION mode is unique in containing
no buffer and recognizing none of the functions that
conscitute the command language. Instead, this mode
responds to key words in the users input, which may
be in sentence form. The mode provides the user with
general information about PAS-II: its basic organi-
zation, purpose, and techniques of operation. This is
to be contrasted with the HELP function, which pro-
vides the user with specific, on-the-spot information
about the mode he is in.

Control Structure

The control cycle for PAS-II is shown in the
flow diagram of Figure 4. The solid arrows indicate
the stage that is entered once processing in the
cu'rent stage is finished. The broken arrows indicate
which stage to enter before processing is started,
Processing in LINGUISTICLl, SEMANTIC3, and GRAPHIC? is
incremental. In each of these modes only part of the
data from the previous mode is processed at one time.
This initial portion of the data is then carried
through the rest of the system, leading to the growth
of PBG nodes, before the rest of the data in the
previous mode is processed. This is done to establish
a semantic context (the PBG) as early as possible in
the processing sequence so it can provide feedback =
needed for linguistic, semantic, and group processing.

Since the control organization of PAS-1I is
quite flexible, the user is under no constraints to
process the data in the order shown in Figure 4. He
may skip or repeat stages within the existing control
framework, and may redefine the control cycle (via
the CONTROL mode). He may also have the system put
him into the next run mode in the control loop, or
even automatically step him through the run modes,
initiating the processing at each stage (see NEXT
and AUTOMATIC in Table 2).

Data Processing

Figures 3 and 4 show the processors which con-
prise the control cycle of PAS-II. In the Topic
processor transcribed text is segmented into phrases
containing only a single task topic.™ Then in the
Linguistic processor an initial collection of these

At present the PBG provides feedback for group
processing only.

-

*x R
This is a slight extension:
mented text as input.

PAS-1 recuires seg-

id

WL R

FUNCTTONS

NAME

DESCRIPTION

(mode name)

Puts user into the mode named.

P T T m———

CREATE Creates a new mode.
DISPLAY Displays the contents of M.
B ERASE Uncreates M (if it was formed using CREATE).
& EXIT Takes the user out of the system (to LISP;.
S HELP Provides system information pertinent to M.
1 MODE Tells the user what mode he is ir.
C VEX1 Puts the user into the next appropriate ~un mode of C.
RULE Puts the user into the rule mode associated with M.
RUN Puts the user into the run mode associated with M.
BREAK Breaks a line in M into two or more smaller lines.
CONNECT Connects adjacent lines in M to form a single line.
E DEFINE Permits the user to define the contents of lines in M.
D DELETE Deletes lines in M,
1 ED Enables the user to perform intra-line editing in M,
T INSERT Inserts a line alter a given line in M.
READ Reads data from a disk file into M,
RENUMBER Renumbers the lines in M,
WRITE Write the contents of M onto a disk file.
AUTOMATIC Steps the user through C, executing GO in each run mode.
BATCH Stops system queries during run mode processing.,
COMMENT Permits comments to be displayed when a line is displayed.
FAST Speeds up reading from the disk by eliminating format checking.
b HUSH Abbreviates error messages.,
A NUMBERS Causes disk files to be written with buffer line numbers.
G PRINT Puts all the 1/0 at the terminal onto a disk file.
SEARCH Causes processing to be repeated until no rules are applicable.
SUPPRFS3 Suppresses printing of auxiliary information during processing,
TIME Causes processing time in M to be printed.
VERSION1 Causes the old version of grammar/parser to be used.
VERSION2 Causes the new improved version of grammar/par:er to be used.
AGAIN Puts the data in M into P and firzs GO.
R CoPY Prints the copy of the data in M,
0 GO Processes the data located in P and puts the result into M.
C RECOPY Puts the copy of the data from M back into M.
E RE“TART Puts the copy of the data from P back into P and fires START.
S START Deletes the cz2ca in M and fires GO.
S

.

LY

KEY M: mode buffer of the mode the user is in
P: mode buffer prior to M in C
C: control cycle

Table 2. Description of PAS-il Functions
(Flag descriptions are for the condition flag = T)

<

Buissaso.id 31043q 191us 0} 3RS we==m
Buissaso:d Jalye Ja1ua O) abiels = :Aay

11"SVd J0 wesbeip mo|4 -t ainbiy

o | e XA

-
I
-7 'II
’ -~
»7 $ZINuRWAG Ill
ul 4

’
- P

~. BleQ L~
-~ ’
oot

02"

S9

-

et s S SRR et T Ry

HOSS300Hd dNOH D HOSS3IJ0Hd 99d HOSS3ID0Hd 30VvH 1L
r
deug uonez) walsAg uonez|
SuMouNuN < u ez nezi
suluLIAlag L20 so1reyag seaury [Juononpoig| | -piepuerg | | PUIEW
’ wajqoid
P L)
abeig abeig abeig abeig abeig abeig abeig
Loydesg y Zaydesg £91ydesn |aoeuy Zaoeu] £aoeJ paokd |
'
[\ ' : i
! i) .
L] - L]
i S ONA.
_ .7 o \\.\ III
{ L7 étydergs o7 ¢didoy ~
wml he S ul \V AI T \Vll
AN, eleg Lo Se meg L.t AL
IIJ\\\ IOJ\\\ 1
o ' '
/ 1 i
-=» buidriosb [[uonez uon Y uon ta-f--d uone} uonez!
-01044 -JeULION) -esbaju| 1518d -oenx3y -uawbag -{eniuy
— F=— < e
-=- abelg abeig abeig abeig abeig abe.g aberg
£21ueWag Zo1uBWag | d1Lewas zansinbuiq Lansinbuin) - ado | X3l
1
'
HOSS3IO0Hd DILNVINIS [HOSS300Hd JILSINONIT H HOSS300Hd 31401
:
=

R Rt r L e

g S T -

segments is parsed yielding sets of scmantic elements,
These clements are processed and refined in the
Semantic processor to produce groups composed of one
operator element and its associated input and output
knowledge elements. 1n the PBG processor these proups
are incorporated into the PBG. The Trace processor

is then used to compzre this PBG with the trace
produced by a given production system model of the
subject,

Topic Processor. The Topic processor contains
two run modes: TEXT and TOPIC. TEXT is an initiali-
zation mode; it holds the data for TOPIC to process.
Thus no real processing takes place in it. The
TOPIC mode uses the SEGMENTATION rules to sepgment all
the text in the TEXT mode. These rules have the
peneral form: string1 / string? , where a string is
any sequence of words, punctuation marks, or word
classes (as defined in the GRAMMAR mode) , including
the null sequence. The slash (/) indicates where the
text is to be broken, i.e., after every occurrence
of string, that is immediately followed by an occur-
rence of string,. Figure 6 show SEGMENTATION rules
for cryptarithnétic (to be used in the example in
Section 4),

Linguistic_Processor. The Linguistic prucessor
cortains two run modes: LINGUISTIGL and LINGUISTIC2,
In LINGUISTIG1 the EXTRACTION rules are used to select
a consecurive set of segments from ‘TOP1C, representing
an initial guess as to the minimum number of segments
from which a group can be inferred. Processing con-
sists only of transferring these sepments from the
TOPIG mode to the LINGUISTIGl mode. At present, the
EXTRAGTION rules are simply a single inteper speci-
fying how many segments to transfer.

Processing in the LINGUISTIG2 mode consists of
applying the SPAGE and GRAMMAR rules to all the topic
sepments in LINGUISTIGl. The parsing operation pro-
duces, for each segment, a set of semantic elements
repr:senting the meaning of the segment. The rules
in the SPAGE mode define the problem space and have
the form: ™ (semantic-clement) type, where a semantic
element is either an operator, knowledge, or indicatcr
element, and the type is either OP, KN, or IND. The
GRAMMAR™™ rules define a key-word prammar and have the

form: <class> = (item11 item12 Ao o) (1tem21 1tem22
) » where an item is either a class

(denoted by angle brackets) or a literal (such as a
word, letter, or character). An asterisk (*) can be
used between any two items to indicate a match with
any string of text, and any GRAMMAR rule which is a
disjunction of single literals can be written without
parantheses. Figure 6 shows SPAGE and GRAMMAR rules
for cryptarithmetic.

SPACE rule 8 in Fipure 6 is an exception. It
defines a set named <v> containing tvo members,
the class <LETTER> and the class <TCARRY>.

Two parsers dre available, a simple top down
parser and a more sophisticated parser written
by M. Rychener.

Semantic Processor. The Semantic processor
contains three run modes: SEMANTICL, SEMANTIC2, and
SEMANTIG3. 1In SEMANIICL the INTEGRATION rules produce
new elements by combining semantic elements generated
from the same or adjacent segments. In SEMANTIC2 the
NORMALIZATION rules map knowledge and indicator ele-
ments into single clements reflecting the relationships
existing between two or more knowledge elements. 1In
SEMANTIC3 a tentative operator group (protogroup) is
formed., The INTEGRATION AND NORMALIZATION rules are
replacement rules of the type A -> B, i.e., replace
A with B. Both A and B can be lists of semantic
elements. A slash (/) indicates that the next
elements of the list occur on the next line of the
mode buffer. Class names and X's are used as vari-
ables, and in the NORMALIZATION rules A's are vari-
ables which stand for knowledge elements on adjacent
lines connected by the AND indicator. Typiral
INTEGRATION and NORMALIZATION rules for crypt-
arithmetic are shown in Figure 6. GROUPING rules are
not shown.” They define a protogroup to be the
largest consecutive sequence of elements containing
no more than one operator element.

Group Processor. There are two run modes in the
Group processor: GRAPHIC1, and GRAPHIG2. GRAPHIGL
processing fills in the values of variables in the
semantic elements by comparing the element containing
variables with all the elements currently active in
the PBG, i.e., the current context. When a match is
found the appropriate values are filled in. Currently
the UNKNOWNS rules are not accessible to the user,

Processing in GRAPHIC2 is a joint man-machine
effort.”™ The goal is to hypothesize for each knowl-
edpe element its origin, i.e., the operator and its
inputs (and the operators that produced those inputs,
etc.) that produced that knowledge element as output,
The system queries the user asking for possible
operators and inputs that could have produced the
element whose origin is being sought. From this
information the system constructs an origin tree,
and hypothesizes which path through the tree repre-
sents the actual origin of the element. The path is
piciked on the basis of the agreement between the
hypothesized inputs and the actual context defined by
the current PBG, The ORIGIN rules, like the GROUPING
and UNKNOWNS rules, are currently not accessible,

PBG Frocessor. The PBG processor contains one
run mode: GRAPHIG3. 1In the GRAPHIG3 mode, processing
consists of taking the operator groups produced in
GRAPHIG2 and incorporating them into the probiem
behavior graph., The CONFLIGT rules are used to deter-
mine whether or not any knowledge elements in the
operator groups conflict with knowledge already in the
PBG. 1If such a conflict occurs, the PBG rules are
used to restructure the PBG so the conflict is
eliminated.

At the current stage of development the G:ouping
tules have not been made accessible to the user.

L
This is the major place where we have not regained
in PAS-1I the power for automatic processing
available in PAS-1.

Both the CONFLICT and PBG rules are ordered
production rules of the formS » A, i.e., in situation
S take action A (12, 13). A situation is defincd by
a list of values of certain variables, called the
state vector, SV. The left side of cach production
rule has the form (V vV, V., ...), where Vn repre-
sents a permissible value Ior the uth state vector
variable, The right side has the form (A, A, A} 0o0)g

where the A's represent actione to be taken. The cur-
rent values of the state vector variabies are compared
with the left side of each production rule. The first
match, from top to bottom, determines the actions to

be taken (an asterisk is considered to match any value).

Figure 6 shows CONFLICT and PBG rules for
cryptarithmetic. 7The CONFLICT rules determine
whether or not two given kuowledge elements conflict.
The example CONFLICT state vector contains: (SAME 2),
which is true (T) if the second items of both the
elements are identical and false (F) otherwise;

(ITEM 1 1), which returns as a value the first item
of the first element (the element in the PBG); and
(ITEM 1 2), which returns as a value the first item
of the second clement (the element in the group).
Thus if the two elements being compared were (ODD R)
and (NEQ R 5) CONFLICT rule 3 would match the state
vector and the decision would be that no conflict
exists,

The PBG rules determine the type of restruc-
turing that occurs once a conflict is detected. The
PBG state vector in Figure 6 has 2 variables: TYPE,
which has the vaiue CON if restructuring is based on
conflict and SIM if it is based on similarity;” ani
(ITEM 1 2), which is defined above. The actions shown
in Figure 6 are RLOCKREJ, a type of restructuring
where blocks of aidjacent nodes are abandoned, and
COPY, a specificatioa that the group causing the
restructuring should remain in the active portion of
the PBG after restructuring. The state vectors for
CONFLICT and PBG may contain viariables and actions
other than the ones shown in Figure 6. For a complete
description of these rules see the PAS-II reference
manual (16),

Trace Processor. The Topic, Linguistic,
Semantic, Group and PBG processors comprise the major
portion of FAS-II. It is this portion which repre-
sents a generalized version of PAS-1, The Trace
nrocessor is a new c¢xtension to the system and has no
analogue in PAS-I. Some parts of it, like the MATCH
mode, are still under development. The Trace proc-
essor enables the user to write a production system
model of the subject (6), and then compare the trace
obtained by running the productior system model with
the PBG obtained by analyzing the protocol. The
details are described elsewhere (16).

4, Example of Program Operation

To illustrate the use of PAS-1I, we present a
listing of the actual user-machine interaction in-
volved in the on-line anclysis of a short crypt-
arithmetic protocol. The cryptarithmetic task is
given in Figure 5. Both the protocol and the crypt-
arithmetic rules used for this example are shown in
Figure 6. The protocol is stored in the TEXT mode
and the cryptarithmetic rules in the eight rules modes
shown. These rules approxzimate the minimal set needed

The PBG rules are also used for restructuring when
similarities (identical nodes) are detected, as
discussed in an earlier paper on PAS-1 (15). (?

to analyze the given protocol, and are for expository
purposes only."

The annotated listing is shown below, The user
input is in lower case and the system output in upper
case, The system prompts the user by typing ecither
an asterisk () or a question followed by a question
mark (?).

%text display
TEXT HOOE
1. D IS5y THEREFORE T IS 8 . ASSUME R EQUALS & . SINCE You

CARRY 1 , R IS DOD . RSSUME R IS 7 , NOT S .
*hext go

TOPIC HOOE

1. D 1Is s
THEREFORE T IS 0
ASSUHE R EQUALS 4 .
SINCE YOU CARRY 1
R IS 00D
ASSUME R IS 7 ,
NOT 5 .

0r > yes

TOPIC MODE FINISHED

#next gyo

LINGUISTICL HOOE
1. D IS5

2. THEREFORE T IS 0 .
3. ASSUME R EOUALS 4 .
4. SINCE YOU CARRY !
5. R 1S 000
6. ASSUHME R IS5 7 ,
7. NOT S .

0K? yes

*next go

DONALD D=35

+GERALD
ROBERT

The above expression is a simple arithmetic sum in
disguise. Each letter represents a digit, that is,
v, 1, 2, ..., 9. Each letter is a distinct digit.
You are given that D represents the digit 5; thus,
no other letter may be 5,

What digits should be assigned to the letters such
that when the letters are replaced by their corres-
ponding digits the above expression is a true
arithmetic sum?

Figure 5. Cryptarithmetic Task

The user first entered the TEXT mode and dis-
played its contents, He then entered the next mode
in the control cycle, TOPIC, and started processing
by typing GO. This caused the SEGMENTATION rules to
be applied to the data in TEXT. The system indicated
that the data in line 1 of the previous mode had been
transformed into the seven lines shown above, and
asked if this transformation was satisfactory (OK?).
At this point the user typed yes, telling the system
to actually put those seven lines into the next seven

At least four times as many rules would be needed
for a complete set ‘15).

1.

RN L WN —

— oV NOUIAE WN —

——

swN -

H WA -

—

TEXT MODE

D IS 5 ; THEREFORE T IS 0 . ASSUME R EQUALS 4 ., SINCE YOU
CARRY | , RIS ODD ASSUMERIS 7 v NOT 5,

SPACE RULES

. (NEG) IND

. (ODD <V>) KN

. (EQ <V> DIGIT>) KN

. (THEREFORE) IND

. (BECAUSE) IND

. (ASSUME) IND

. (DIGIT <DIGIT») KN

. (<V> CLETTER> <CARRY>) SPASET

GRAMMAR RULES

- <EQ> = (<CARRYEQ>) (<LETTER)> % <EQUAL> % <DIGIT»)
- <CARRYEQ> = (<CARRY> % <DIGIT>) (<CARRY>)
- <QDD> = (KLETTER> * <EQUAL> % ODD)

- <EQUAL> = IS EQUAL EQUALS BE WAS ARE

. <NEG> = CANNOT NOT NO N'T

- <THEREFORE> = THEREFORE IMPLIES

. <ASSUME> = ASSUME ASSUMING

. <BECAUSE> = BECAUSE SINCE

- <CARRY> = CARRY CARRYING CARRIED
KLETTER> =ABDEGLNORT
.<DIGIT»=0123456789

SEGMENTATION RULES
i
3/

. <DIGIT> , /
. <LETTER> , /

EXTRACTION RULES

12

INTEGRATION RULES

(X1 CARRY X2) = (X1 <C> X2)

- (EQ X1 X2) / (DIGIT X3) => (EQXI X2) / (EQ X1 X3)

- (NEG) (EQ <LETTER> <DIGIT>) => (NEQ <LETTER> <DIGIT>)

- (ASSUME) (EQ <LETTER> <DIGIT>) => (AEQ <LETTER> <DIGIT>)

NORMALIZATION RULES

- Al / (THEREFORE) A2 => (BECAUSEOF Al A2)

2. (BECAUSE) Al / A2 => (BECAUSEGF Al A2)

S W —

S W —

CONFLICT RULES

- SV = ((SAME 2) (ITEM | 1) (ITEM | 2))
. (F % %) => NO-CON

. (x ODD NEQ) => NO-CON

. (% % %) => ASK-IF-CON

PBG RULES

. SV = (TYPE (ITEM | 2))

- (CON NEQ) => BLOCKRE.

. (CON %) => (BLOCKREJ COPY)
. (% %) => BLOCKREJ

Figure 6, Cryptarittmetic Rules.

/0.

e s

lines of the TOPIC buffer. 1f the processing had SEMANTIC? MODE

been unsatisfactory, the user could have jumped to RULES APPLICO ¢ | 2
the SEGMENTATION mode, changed the rules, Jumped 1-7. (BECAUSLOF ((E0 D S)) ((EQ T 0)))
back to TOPIC, and reprocessed the data using the new (AEQRR,4)
] rules before proceeding with the next processing step. :gzg“zsg?r ({ED «C> 1)) (000 RIY)
The user then entered the next mode, LINGUISTICL, ons g::[D o
and started processing. The EXTRACTION rules were SEHANTIC2 HODE FINISHT O
applied to the seven ‘ines of data in TOPIC and the
system indicated that the processing should consist of SEHMANTICI HOOE
placing these lines in LINGUISTICL unchanged. Note 1. (BECAUSEOF ((E0 D S)) ((EO T 0)))
that the system indicated that line 1 from TOPIC was 2. (AEO R &)
transformed into a single line in LINGUISTICL, etc., 3 JRECRUSE QHRCIEQJCC RNV 000RR IV}
as opposed to the previous step where one tine in TEXT :':ﬂ:g : ;;
was transformed into seven lines in TOPIC, ON;Qes
LINGUISTICS HOOE
<ED> <LETTER> D Processing in SEMANTIC) consisted ol applying the
<tkouAL> 1S INTEGRATION runles to the semantic elements in
<0IGIT> 5 LINGUISTIC2, As indicated above there were five
Lo ;:gno_S) o Ty b applications of the rules. Processing in SEMANTIC,
on? 5 ‘\ ! consisted of applying the NORMALIZATION rules to the
yes batch suppress
BATCH=T seven sets of elements in SEMANTICL, There were two
SUPPRESS-T applications of the rules, and five sets of elements
2. (E0 T @) (THEREFORE) were left in SEMANTIC2, Processing in SEMaii"1C3 con-
FROM 1 THEREFORE T 1S @ . isisted of applying the GROUPING rules, which are not
3. (EQ'R &) (ASSUNE) explicit. These rules simply attempted to pull from
FROM : ASSUME R EQUALS 4 . SEMANTIC2 one operator clement and its associated
SCRRIEORE SRRYSILF. (BECRUSE] k ledpe clements Since no operator el ts were
FRON : SINCE YOU CRRRY t , e g} A ements
S. (000 R} present, iL pulled all the elements from SEMANTIC2.

FROH R 15 000 .
6. (EO R 7) (RSSUME)

FRON ASSUME R 1S 7 , GRAPHICI MODE
7. (NEG) (DIGIT S) 1. (BECAUSEOF ((EO 0 S)) ((EO T 0))
FROM & NOT S . FROM : (BECAUSEOF ((EO 0 5)) ((EO T 8)))
LINGUISTIC2 HOOE FINISHEO OF?® yos
“(batch §) (suppress f) automatic 2. (REO R &)
BATCH-F FROM : (AED R &)
SUPPRES3S=F K7 yes
AUTOMATIC=T 3. (BECAUSEOF ((ED <C> 1)} ((D00 R)})
wnext go FROM : (RECAUSEOF ((EO «C> 1)) ((0OD R}))
0 ® yes batch suppress r: (becauseo! (leq ¢Z 1)) ((odd r)})
8ATCH=T
00 YOU REALLY HANT BOTH AUTOMATIC=T AND BRATCH=T ? yes
Processing in LINGUISTIC2 consisted of applying SUPPRESS3=T
Lhe SPACLE and GRAMMAR rules to the data in LINGUISTIC1 &, (AREQ R 7)
to produce a parse. In step 1l the parse trece was FROH : (REO R 7)
printed and the user set the flag BATCI true to 5. (NEO R 5)
eliminate the OK? question (the system then assumes FROM : (NED R S)

the answer is always yes) and the flag SUPPRESS true pRAPHICTIONERRINLSHED

to eliminate further printing of the parse trees,
Then, before going to the next mode in the control

cycle, the user set the flag AUTOMATIC true so the Processing in GRAPIIC] consisted of applying the
system would automatically step through the appropriate yNKNOWNS rules, which are not explicit. These rules
run rodes executing GO. At this point the LINGUISTIC2 involve searching the existing PBG for elements that
buffer held the seven sets of semantic elements shown match the elements containing unknowns. In this
above. simple cxample no matches were found because the PBG
had not ye' been grown. Thus, in step 3 when the
unknown carry <C> was not found, the u:er told the
system to replace its processing resutt with

SEMANTICI NODE (BECAUSEOF ((EQ €2 1)) ((ODD R))). “hnis was put

RULES APPLIED : & 1 2 & 23

1. (ED 0 5) into line 3 of the GRAPINIC1 buffer, rather than the
2. (ED T 0) (THEREFORE) result containing <C>. 1In effect the user told the
3. (RED R &) system .i:at the value of <C> was C2, i.e., that the
4. (BECAUSE) (E0 <C> 1) unknow carry was the carry into the second column
S. (N00 R} (the L#i=R column),

6. (AED R 7)

7. (NED R 5)

Processing in GRAPNIC2 and GRAPHIC3 occurred as
follows: GRAPIIIC2 was entered and the elements from
line 1 of GRAPNIC1 were processed interactively to
determine their operator groups. GRAPIIC3 was then
entered and these groups were grown as new nodes in the
PBG, Next GRAPHIC? was reentered and the elements

DK? yas
SEMANTICI HMOOE FINISHED

[

T T T T T o L P T T | T e —— = - T S e e cires o o A) i

!
]
b
:

from line 2 of GRAPHICL processed., This graphic2.
sraphic3 loop was repeated for cach line in GRAPHICL,
Below is showa only one of these loops®™: processing
and growing the elemonts from line 3 of GRAPHIC1.

GRAPHICZ MOOE

FOR (BECAUSEOF ((EQ C2 1)} ((DOD R)))
OP = (pc)

CYTPUTS = (odd r)

E INPUTS = (eq c2 1}
l FOR (ED C2 1)
E OP = (av c¢2)
{ INPUTS =
i OTHER ORIGINS FOR (EQ €2 1) ? yes
FOR (EQ C2 D :
0P = (pc DD
INPUTS = (e d 5)(eq cl O)
(EQ 0 S) FOUND IN PRG

(EO C1 0) FOUND IN PBG

OTHER ORIGINS FOR (EQ C2 1) ? no
ORIGIN TREE :
(000 R) (PC)

(EQ C2 1D v

(PC 1D (EQOS)
(EQC1 ®
3. (PC 1) ((EQ O S) (EQ C1 0)) (EQ C2 1)

(PC 2) ((EQ C2 1)) (00O R)

FRON (BECAUSEOF ((EQ C2 1)) ((OQOD R)))

GRIPHIC3 OOE
1. GROH (FO €2 1)
FRON (PC 1) ((EQ O S)» (EQ CI Q) (E@ C2 1)
DD (REO R &) AND (DDO R} CONFLICT ? yes
2. CDNFLICT: N4 (AEQ R &) AND (ODQ R) HITH (BLOCKREJ COPY)
FRON {PC 2) ((EQ €2 1)) (DQO R}
GRRPHIC3 MOOE FINISHEOD

In GRAPHIC2 the system queried the user to deter-
mine possible origins (operators and their inputs) for
the elements in question. This information was
represented as an origin tree as shown above. This
tree is displayed below in a wmorc conventional style.

output: (JDD R)
operators: (PC 2)
input ‘output;: (EQ 12 1)

wef R
/,/’

(EQ DS

operators:

input: (EQ C1 0)

Figure 7. Origin Tree

The system analyzes the tree and decides which path
represents the best origin for the top element, in
this case (ODD R). Here there are only two alter-
natives: the path with the operator: assign a value
to the carry into column 2, (AV C2), and the path
with the operator: process columnl, (PC 1). The
system chooses the latter, based on implicit ORIGIN
rules which tell it to choose between operators by
rating them according to their inputs. The decision
function currently in use is:

fil - Yo ety s o

Choose to maximize: (3 x used-inputs) -

(unused-inputs)

* Space 'imitations prevent us from including the
entire listing.

o Ptk - Rt b ol

where an input is "used" it it occurs In the PHG.
Thus (AV C2) has a rating >f 0 while {PC 1) has a
rating of (3x2)-0 or 6. ‘the format of the operator
sroups produced in GRAPHIC2 is: operator (input
1ist) output.

In GRAPHIC3 the two groups from GRAPHICY? were
incorporated into the PBG. ‘The second group, with
(0bD R) as the output, conflicted with an existiry
group in the PBG and led to restructuring of the PBG
to resolve the conflict. Conflicts were defined by
the CONFLICT rules, the type of restructuring by
the PBG rules.

xgraphicd display
GRAPHIC3 MOOE

N1 8 OP (RECALL D} QuT (EQ O S)

N OP (RECALL C1) OUT (EQ CI Q)

N3 opP (pr) IN (EO0S) (EQC1 & OUT (EQT &)
N4 0P (AV) OUT (REQ R &)

KS op (pC 1) IN (EQ 0 5) (EQ Cl & QuT (EQ C2 1)
NG op (rC 2 IN (EQ C2 1} OuT (0QQ R) e

N7 3 oPC I IN (EQ 0 5) (EQ CI @ OuT (EQ C2 D)
N8 0P (PC 2) IN (EC C2 1) QUT (Qoa R)

N9 0P (AV R) OUT (REQ R 7)

N1Q OP (TO R S) IN (EQ Q 5} OUT (NEQ R S)

After all the data from GRAPHIC1 was processed
in GRAPHIC2 and GRAPHIC3 the contents of GRAPHIC3
were displayed. FKach line in the display represents
a node in the PBG, Node 10 contains the operator
test to see if R can have the digit 5 as a value,

(TP R 5), Figr=e 8 shows this PBG in the conven-
tional representition. Note that the conflict between
(AEQ R 4) and (ODb R) led to a back-up that abandoned
nodes 4, 5 and 6. Thus the currently active nodes,
the ones that define the current context, are those
joined by the heavy lines in Figure 8.

5. Discussion

The initial program, PAS-1, is an artificial
intelligence program by any reasonable criteria. The
task it attempts, the inference from verbal behavior
to Problem Behavior Graph, is a task requiring intel-
ligence when done by humans. The mechanisms used are
those common to other artificial intelligence
programs that tackle somewhat similar tasks: gramaiars
to deal with the surface structure of natural language,
representation of knowledge, matching, and heuristic
search to infer information not directly expressed in
the utterances.

PAS-11 is a program that accomplishes the same
task as PAS-1. Hence, it too is an artificial intel-
ligence program. But when looked at structurally it
more closely resembles a data processing framework
or, possibly, a language. Something has happened in
going {rom PAS-1 to PAS-11, something worth identi.
fying and discussing.

eyt
Let us start with Pleznner (3) and QA4 (8).
These systems are languages for writing programs to
perform a class of artificial intelligence tasks. The

Conflict and PBG rules are described in detail in
an earlier paper (15).
s
There are other representatives of this class,
e.g., POPLER (1) and Conniver (10, 11).

[

ek PR PE—— ———

ubip 1593 aL
anjea ubisse AV |enba jou * E
uwn|od ssasxoud od |enba ubisse - AT)
1U3WaI|3 |[e231 IIv)O3H {enba = ;
s103es3d0 abpajmouy

answyeldAr) Joy ydelq Joineyag wia|qosq ‘g ainbig

exact bhoundaries of these tasks are obscure bu* their
central core is clear and includes a large fraction of
the tasks for which heuristic programshave been built
-- theorem proving, ro. t planninyg, symbolic manipu-
lation, etc. These systems were formed, essentially,
by taking a list processing framework and embedding
within it some of the ad hoc mechanisms developed

for particular heuristic programs. They include back-
tracking, a generalized matching facility, a global
data base (accessed by pattern matchiag) and multi-
processing control. Embedding these mechanism: with-
in a language makes possible their use in novel com-
binations (and in interaction with the other mecha-
nisms available in higher languages).

This same embedding of mechanisms into a language
system has occurred in the transition from PAS-I to
PAS-11, PAS-II provides a framework withir which a
class of Al programs can be easily constructed. This
class is not the same as that of the Planner /QA%
type system, which is more "mainline" artificizl
intelligence. Rather, it appears to be characterizod
as linguistic data processing, the essential feature
being the processing of long seruences of lata
(ratner than just a sentence at a time). This class
intludes, of course, protocol analysis. It also
includes a number of other tasks: content analysis
of more classical verieties (9), problem space con-
struction (2), test grading, and what is coming to be
called semantic filtering.

The embodiment of mechanisms into a language
framework has occurred at two levels in PAS-I1, one
corresponding roughly to that of Planner/QA4 and the
other more specialized. The first level is repre-
sented by the PAS-I1 framework of run modes, rule
modes, common command language, editing system, and
control structure. This includes a set of mecha-
nisms for the data base {the run modes), a matching
facility (the common mechanism for how the rules work
on data), and a backtrack facility (the saving of
buffers so that processing can be undone). Added to
this is the explicit control structure for processing
within a stage and passing through the stages, which
corresponds to a weak method (4) in the same sense
as GPS's basic methods or the basic methods built into
the goal construct in Planner /0A4, These provide a
schema of operation which, though almost content free,
is still a rational procedure for achiuving the
overall goal, The mechanisms adopted in PAS-I1 are
somewhat more shaped than their cocrespondents in
Planner /QA4, e.g., there is not a single global data
base or one stratified by a general context mechanism,
rather the data is organized into homogeneous groups
(the modes) along structural lines.

The second level is the specialization of the
various modes to sgecific subtasks inherent in tasks
of the class: segmentation, parsing, normalization,
etc. The specialized rule systems contain the knowl-
edge about the processing., Thus writing any sort of
legal rules within a given rule system generates proc-
essing of the right sort (though it may not do the
right task). In this respect providing a single gener-
alized rule system or scheme for pattern matching and
pattern evoked actions (in the manner of Planner/QA&)
would move more of the knowledge required back across
the boundary from the language system (PAS-1D to the
coding within the system (the user program in PAS-11,
which is the set of actual rules in the rule modes).

As one moves PAS-I1 in the direction of a

generalized system for a wider class of problems, one
can expect the collection of rule modes to increase,

T TR T TR

be oming eventually, a library in the classic sub-
routine library sense. The system designer is then
faced with the problem of providing these modes with
the rules necded to define processing in the various
problem domains. llowever, one advantage of spec-
ialized rule systems is that when their structure

is highly constrained it becomes easy to predict the
effect of modifying rules in the system (a: compared
to predicting the effect of modifying statements in
a general programming language). This sets the stage
for the development of self-modifying systems which
rewrite their ouw1 rules or, in effect, learn to
improve their nerformance in some data processing
task (12, 13). Such a capability in an interactive
PAS-1i-like system would enable the system to build
or modify its owm rules for a particular problem
domain, using feedback from tue user to direct the
search for good sets of rules.

The evolution from PAS-I to PAS-II in analogy
to the more general evolution going on toward
planner-like language systems should add to the
awareness that embedding mechanisms in language
remains a potent scheme for making advances in
artificial intelligence.

Acknowledgments

This paper will appear in the preprints for the
third International Joint Conference on Artificial
Intelligence (I1JCAI-73). This research was supported
in part by Research Grant MH-07732 from the National
Institutes of llealth and in part by the Aavanced
Research Projects Agency of the Office of the
Secretary of Defense (1'44620-70-C-0107) which is
monitored by the Air Force Office of Scientific
Research,

References

1. Davies, D. J. M., POPLER: a POP-2 planner, MIP,
School of University of Edinburgh.

2. layes, J. R., and Waterman, D. A., Automatic
Problem Space Construction, Psychology Department,
Carnegie-Mellon University, 1973,

3. Hewitt, Carl, Description and theoretical analysis
of planner: A language for proving theorems and
manipulating models in a robot. Al report TR-258
(Ph.D. thesis). MIT Al Laboratory, Cambridge,
Massachusetts, 1972.

4, Newell, A., Heuristic programming: Ill-structured
problems, in Aronofsky, J. S. (ed.) Progress in
Operations Research, vol. 3, Wiley, 1969, pp.
362-414,

5. Newell, A,, and Simon, H. A., Hunan Probiem
Solving, Prentice-lall, Englewood Cliffs, N.J.
1972,

6. Newell, A,, A theoretical exploration of mechanisms
for coding the stimulus, in Melton, A. W., and
Martin, E, (eds.) Coding Processes in Human Memory,
Winston and Sons, Washington, D.C., 1972, pp.
373.434.

7. Newell, A., Simon, H. A., llayes, R., and Gre;g, L.,
Report on a workshop in new techniques in co:initive
research. Computer Science Department, Carnegie-
Mellon University, 1972,

T TN TN T oy, Y e,

e Rl i o

10.

11.

12.

13.

14,

15.

16.

Ruliison, J, ¥'., Derksen, J, A., and Waldinger,
R. J., QA4: A procedural calculu for intuitive

reasoning, Stanford Research Institute, November
1972,

Stone, P, J , Dunphy, D, C., Smith, M, §S.,
Ogilvie, D, M., The General Inquirer, M1t
Cambridge, Massachusetts, 166,

Sussman, Gerald, and McDermctt, Drew, Why
conniving is better than planning, MIT, Cambridge,
Massachusetts, April 1972,

Sussman, Gerald, and McDermott, Drew, Conniver

Reference Manual, MIT, Cambridge, Massachusetts,
May, 1972,

Waterman, D. A,, Machine learning of heuristics.
Ph.D. liesis, Computer Science Department,
Stanford University, 1968,

Waterman, D. A., Generalization learning tech-
niques for automating the learning of heuristics,
Artificial Intelligence, vol. 1, nos. 1 and 2,
1970, pp. 121-170.

Waterman, D. A., and Newell, A., Protocol analy-
sis as a task for artificial intelligence.
Artificial Intelligence, vol. 2, nos. 2 and 3,
1971, pp. 285-318.

Waterman, D. A,, and Newell, A., Preliminary
results with a system for automatic protccol
analysis. Carnegie-Mellon University, Computer
Science Department, 1973,

Waterman, D, A., PAS-II Reference Manual,

Psychology Lepartment, Carnegie-Mellon University,
1973,

